
PropKeyer Expanded Project Documentation

 1

PropKeyer – Expanded Project Documentation

Contents

1. System Overview and Design Objectives 2
 1.1 Modes of Operation .. 2

2. Hardware Description ... 4
 2.1 Main Electronics Assembly 4
 2.2 Top Panel Assembly .. 4
 2.3 Side Panel Assembly .. 4
 2.4 Rear Panel Connectors ... 5
 2.5 Code Speed Control ... 5
 2.6 DC Power Requirements .. 6

3. Software Description ... 7
 3.1 Cogs and Methods in the PropKeyer 7
 3.1.1 Cogs: ... 7
 Main ... 7
 fpcontrols ... 8
 sidetone .. 8
 keyboard .. 8
 padstate .. 8
 dot .. 9
 dash .. 9
 3.1.2 Methods: ... 9
 iambicA ... 9
 iambicB ... 9
 bug .. 10
 sideswi .. 10
 console .. 10
 ddtx ... 10
 pushstack ... 10
 popstack ... 10

PropKeyer Expanded Project Documentation

 2

1. System Overview and Design Objectives

The PropKeyer is an electronic keyer designed to generate Morse Code characters. It’s
primarily intended to be used with an “iambic” key (horizontal-acting dual-paddle key),
but can emulate different styles of code sending that have come and gone as the
telegrapher’s art has developed over the past 150 years. This instrument allows the
operator to re-create the feel of Morse code telegraphy as it used to be – while using a
modern day iambic key. The PropKeyer also supports a PS/2 keyboard and a
conventional “straight” single-lever manual telegraph key.

The platform for this project is the Propeller Development Board. The wealth of
resources available there and on the Propeller chip itself makes it easy to implement
additional convenience features, such as:

- A six-level FIFO stack running in its own cog stores any key presses that come
ahead of the actual transmission and inserts them at the proper time for perfectly
formed characters.

 - Another cog runs a software-generated side tone oscillator which follows the
 keyer output. A small loudspeaker and a volume control with an on-off switch
 allows the user to hear the code as it is being sent out the rear-panel key jack. This
 cog also controls a LED on the front panel for a visual indication of keyer output.

 - Non-volatile calibration data for the speed controller is stored in the unused
 portion of the EEPROM provided on the Development Board.

1.1 Modes of Operation

The modes of operation emulated by the PropKeyer are:

• Iambic A – A series of dots or dashes is transmitted when the paddle is pushed to
either the right or left, respectively. (This is the usual setup for a right-handed
person. Some left-handers find it convenient to reverse the function of the
paddles.) If both paddles are pressed simultaneously, alternating dots and dashes
are sent.

• Iambic B − This mode is nearly identical with iambic A, with one subtle

difference: At the end of the alternating dot-dash series that occurs when both
paddles are pressed, an extra code element is sent which is the opposite of the
element that was in progress when the paddles were released. In other words, if a
dot was in progress when both paddles are released, a dash is sent, and vice-versa.

• Bug – also referred to as a semi-automatic or “Vibroplex” key, after the company

that originally manufactured and patented this design around 1904 (and,

PropKeyer Expanded Project Documentation

 3

incidentally, is still manufacturing them today). The bug key has, in effect, a
single set of electrical contacts and features a horizontal arm, or pendulum, which
transmits a series of dots when the paddle is pushed to the right and held. The
speed is controlled by a sliding weight on the vibrating arm. When the arm is
pushed to the left, the contacts are simply closed and the operator forms the
individual dashes by finger action. An arrangement of springs keeps the arm
centered when no code is being sent. True bug keys are strictly mechanical and,
unlike the iambic keys, do not require an electronic keyer to function. The bug
appeared at a fairly early stage in the development of telegraphy and was widely
adopted when it became evident that a side-to-side motion resulted in faster
sending and less operator fatigue.

• Sideswiper – The sideswiper (also known as a “sidewinder”, or “cootie” key) was

another early departure from the vertical acting straight key. This key is
mechanically simpler and so less expensive than the Vibroplex bug. It has a single
paddle which can be moved to either side and simply closes a set of contacts,
regardless of which direction the paddle is moved. The length of both dots and
dashes is under control of the operator who simply slaps the paddle back and
forth.

• Console, or keyboard mode – The PropKeyer accepts a PS/2 computer keyboard.

When this mode is selected characters are fully formed and transmitted by typing
on the keyboard.

PropKeyer Expanded Project Documentation

 4

2. Hardware Description

2.1 Main Electronics Assembly

The hardware platform on which this unit is constructed is the Propeller Development
Board, manufactured by Parallax, Inc. This board makes up the main electronics
assembly of the PropKeyer. It’s approximately 3 by 4 inches and is supplied with a
Propeller chip, EEPROM, 5 MHz crystal, two voltage regulators and four pins for USB
access and programming the chip. Most of the board consists of an unpopulated
prototyping area.

 The Propeller chip has a unique design consisting of a central hub processor with eight
peripheral processors which may be assigned to independent tasks. Due to the wealth of
resources available on this chip, no other integrated circuits are required to complete the
PropKeyer hardware design.

The enclosure for this unit is a 4 x 7 x 2.5 inch cabinet with a sloping front. The Propeller
Development Board is mounted inside this enclosure, with the power input connector and
programming pins accessible through the rear of the cabinet.

2.2 Top Panel Assembly

A top panel assembly holds the operating controls: a five-position rotary switch for
selecting the operating mode, a rotary potentiometer for setting the code speed and a
pushbutton connected directly in parallel with the output jack – useful when tuning up the
transmitter. There are also two LEDs – one which blinks to follow the Morse code being
transmitted while the other indicates that power is present. This top assembly is mounted
inside the sloping front panel of the cabinet and connects to the main board by means of a
20-conductor ribbon cable and a dual-row header.

2.3 Side Panel Assembly

The aforementioned loudspeaker and volume control are mounted on the side panel of the
cabinet and connect to the main board via a two-pin header. The rotary volume control
activates a switch at the extreme low end of its range to shut the ‘speaker off completely.

PropKeyer Expanded Project Documentation

 5

2.4 Rear Panel Connectors

All I/O connectors are mounted on the rear panel assembly

Function Connector Type
Iambic paddle key 3.5 mm stereo audio jack
Straight key 3.5 mm mono audio jack
Keyer output jack ¼ inch mono ‘phone jack
PS/2 keyboard 6-pin mini-DIN, female

The keyer output jack is driven by an open-collector NPN transistor. This transistor is a
general-purpose switching type which can sink over 100 milliamperes and switch an
open-circuit voltage up to +40volts. This is compatible with most modern solid-state low-
power transceivers using “positive” keying. This transistor is not suitable for transceivers
which use “negative” keying or for older, tube-based gear. A keying relay is usually
necessary to handle the negative voltage and/or higher voltage requirement imposed by
this type of equipment.

2.5 Code Speed Control

The code speed is set with an analog potentiometer located on the top panel assembly and
calibrated in words per minute. A numerical value is derived from the resistance of the
pot by using the circuit shown below, connected to pin scpin.

1 uF

330

6.8 k

100 k
scpin

A measure of the resistance of the 100 kohm potentiometer is obtained by driving scpin
high for 1 millisecond to charge the capacitor, then reversing the direction of the pin and
using a counter to record the time for the capacitor voltage to decay to the logic
threshold. This decay time is proportional to the resistance of the external circuit.

Two momentary-contact pushbutton switches mounted on the Development Board allow
the user to enter calibration data for the speed control pot. When the “SC5” button is
pressed, the setting of the speed control pot at that time is stored in EEPROM. This value
determines the lower code speed limit (5 words per minute). The “SC40” button does the
same operation, storing the pot setting in EEPROM for the upper code speed limit (40
wpm). The “CW” LED on the top panel flashes when the pot setting has been read and
successfully stored into the EEPROM.

PropKeyer Expanded Project Documentation

 6

The calibration procedure only requires the user to rotate the pot to its minimum limit
before pressing SC5 and to its maximum limit before pressing SC40. These values are
used within the fpcontrols cog to calculate the correct value of wpm for any intermediate
position of the speed control pot. (See fpcontrols in the Software Description section of
this document.)

2.6 Dc Power Requirements

Power requirement for the PropKeyer is +8 to +16 volts dc at 60 mA and is supplied to
the system via the dc coax connector mounted on the Propeller Development Board. The
board was modified slightly to allow a SPST rocker switch, mounted on the side of the
cabinet, to switch power to the board. A Schottky diode in series with this switch
prevents accidental reversed power connection to the board .

PropKeyer Expanded Project Documentation

 7

3. Software Description

The PropKeyer software package is written entirely in the SPIN language and relies
heavily on the multi-tasking capability afforded by the eight independent processors
available on the Propeller chip. Some of the methods (i.e., sub-routines, or modules) used
here are taken directly from the Propeller library and Object Exchange available on the
Parallax web site. PS/2 keyboard support and the methods to access the EEPROM for
non-volatile storage of calibration data are examples of these.

A schematic of the program structure is shown below:

Main fpcontrols
sidetone
keyboard
CASE (read mode selector switch)

console
termkeyer

dot
dash

padstate
ddtx

dot
dash

iambicA

padstate
ddtx

dot
dash

iambicB

bug
dot

sideswi

3.1 Cogs and Methods in the PropKeyer Object

3.1.1 Cogs:

Main

• Initialize I/O pin directions.
• Initialize EEPROM interface method.
• Initialize speed control pot limits.
• Start front panel controls cog (fpcontrols).
• Start sidetone cog.
• Start serial data terminal interface cog.
• Start keyboard support cog.

PropKeyer Expanded Project Documentation

 8

• Initialize dash weight to 3 (default value).
• Enter loop monitoring the state of the mode selector switch on the front panel.

The method corresponding to the selected mode is called and program control is
returned here when the mode switch changes state.

fpcontrols

• Set up the counter register for monitoring the speed control pot setting.
• Initialize I/O pin directions.
• Start loop:
 - update the speed control pot setting, decaycount
 - if new user-defined speed control pot limit settings, store in EEPROM
 - copy speed limits from EEPROM into scpot5 and scpot40
 - calculate updated value for variables wpm and timeunit

 A number corresponding to the speed control pot resistance is stored in variable
 decaycount and is converted to a number between 5 and 40 (corresponding to
 words per minute) by SPIN code calculation:

wpm := 35*(decaycount - scpot5)/(scpot40 - scpot5) + 5

 Based on the "PARIS" standard method of measuring words per minute, the basic
 Morse code time unit in milliseconds is equal to 1224/wpm. This is the ON time
 duration of one dot. In system clock cycles it is given by:

timeunit := (1224/wpm) * (clkfreq/1000)

sidetone

• Initialize I/O pin directions.
• Continuously monitor the state of the PropKeyer output pin (keypin). Blink the

“CW” LED on the top panel assembly and generate a square wave at an audio
frequency whenever the output keypin is high. The sidetone audio is directed to
the sidetone output pin, sidepin. The program constant tonefreq sets the output
frequency in Hertz.

keyboard
 This library method runs in its own cog. It receives characters typed on a PS/2
 computer keyboard and returns the corresponding ASCII code. This method is
 called from within the console method.

padstate
 This cog monitors the state of the iambic paddle key contacts every 100
 microseconds. De-bouncing is accomplished by left shifting the state of a paddle
 key into a four-bit register, dotdebo or dashdebo, depending on which paddle has
 been pressed. When the debounce register contains %1000, we assume that a
 high-to-low transition has occurred on the pin in question, indicating a paddle

PropKeyer Expanded Project Documentation

 9

 press. Flags dotpress and/or dashpress are set TRUE. These are global flags and
 must be cleared by the object that uses them, such as ddtx.

dot (Note: This cog is started from methods ddtx or bug)
• Set pin keypin as output
• Set global flag dotflag TRUE
• Set keypin high for one time unit
• Set keypin low for one time unit
• Set dotflag FALSE
• Stop cog

dash (Note: This cog is started from method ddtx)
• Set pin keypin as output
• Set global flag dashflag TRUE
• Set keypin high for dashweight time units
• Set keypin low for dashweight time units
• Set dashflag FALSE
• Stop cog

3.1.2 Methods:

iambicA
iambicB
These methods continuously call a CASE statement which monitors the state of the
iambic key paddles.

If only a single paddle is pressed,

• Clear the debounce register associated with the key pressed
• Start the padstate cog
• Set a flag, ddsem, indicating which paddle, dot or dash, is pressed
• Call method ddtx, which transmits a dot or dash according to setting of ddsem
• Pop the FIFO stack and send dots or dashes stored there to ddtx
• Stop the padstate cog

If both paddles pressed,

• Alternate flag ddsem on each pass through the loop and call ddtx.
• When paddles are released, send an additional element if in iambic B mode.
• Check the mode switch and if it has changed state return to the Main method

PropKeyer Expanded Project Documentation

 10

bug
Start loop:

• If the dot paddle is closed, send a dot by starting the dot cog.
• If the dash paddle is closed, send continuous high level out to keypin.
• Check the mode switch and if it has changed state return to the main method.

sideswi

• If either paddle is closed, send a continuous high level out to keypin.
• If both paddles are closed, or neither paddle is closed, send low level to keypin.
• Check the mode switch and if it has changed state return to the Main method.

console
 construct the ASCII-to-Morse lookup table. This table is an array of word-length
 (two byte) variables, indexed by ASCII code. Each table entry holds the Morse
 symbol length (number of dots and dashes) in byte 1 and the dot-dash pattern for
 the symbol in byte 0. The pattern in byte 0 is left justified, dots being indicated by
 a “0” bit and dashes by a “1”.

Start loop:

• Get character input from PS/2 keyboard.
• Convert lower case to upper.
• If Ctrl-w followed by a number, update dashweight variable.
• If Ctrl-f followed by a number, update Farnsworth timing variable, farnsext.
• Check the mode switch and if it has changed state return to the Main method.

ddtx

• Send out a dot or dash, depending on the value of flag ddsem; a dot if flag is
TRUE, a dash if FALSE.

• While the element is in progress, capture any further paddle contacts by
monitoring the flags dotpress and dashpress (set by cog padstate).

• Push dot or dash request onto the FIFO stack.

pushstack
 Find bottom of stack and insert new data there. Stack entries are 5, 10
 or 9999 (dot, dash, End Of Stack mark, respectively).

popstack
 Remove a data item from the top of the stack and move all other entries
 up one place.

